3.394 \(\int \frac {1}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=143 \[ \frac {\cos (e+f x)}{2 a f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {\cos (e+f x) \tanh ^{-1}(\sin (e+f x))}{2 a c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \]

[Out]

-1/2*cos(f*x+e)/f/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2)+1/2*cos(f*x+e)/a/f/(c-c*sin(f*x+e))^(3/2)/(a+a
*sin(f*x+e))^(1/2)+1/2*arctanh(sin(f*x+e))*cos(f*x+e)/a/c/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.28, antiderivative size = 143, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {2743, 2741, 3770} \[ \frac {\cos (e+f x)}{2 a f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {\cos (e+f x) \tanh ^{-1}(\sin (e+f x))}{2 a c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

-Cos[e + f*x]/(2*f*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2)) + Cos[e + f*x]/(2*a*f*Sqrt[a + a*Sin
[e + f*x]]*(c - c*Sin[e + f*x])^(3/2)) + (ArcTanh[Sin[e + f*x]]*Cos[e + f*x])/(2*a*c*f*Sqrt[a + a*Sin[e + f*x]
]*Sqrt[c - c*Sin[e + f*x]])

Rule 2741

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Di
st[Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[1/Cos[e + f*x], x], x] /; FreeQ[{a, b
, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2743

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(a*f*(2*m + 1)), x] + Dist[(m + n + 1)/(a*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
&& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + n + 1], 0] && NeQ[m, -2^(-1)] && (SumSimplerQ[m
, 1] ||  !SumSimplerQ[n, 1])

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {1}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx &=-\frac {\cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {\int \frac {1}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx}{a}\\ &=-\frac {\cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {\cos (e+f x)}{2 a f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {\int \frac {1}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx}{2 a c}\\ &=-\frac {\cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {\cos (e+f x)}{2 a f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {\cos (e+f x) \int \sec (e+f x) \, dx}{2 a c \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=-\frac {\cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {\cos (e+f x)}{2 a f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {\tanh ^{-1}(\sin (e+f x)) \cos (e+f x)}{2 a c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.62, size = 170, normalized size = 1.19 \[ \frac {\cos (e+f x) \left (-2 \sin (e+f x)+\log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )+\cos (2 (e+f x)) \left (\log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )-\log \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right )\right )-\log \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right )\right )}{4 c f (\sin (e+f x)-1) (a (\sin (e+f x)+1))^{3/2} \sqrt {c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

(Cos[e + f*x]*(Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] + Cos[2*(e + f*x)]*(Log[Cos[(e + f*x)/2] - Sin[(e + f*
x)/2]] - Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]]) - Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]] - 2*Sin[e + f*x]
))/(4*c*f*(-1 + Sin[e + f*x])*(a*(1 + Sin[e + f*x]))^(3/2)*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 262, normalized size = 1.83 \[ \left [\frac {\sqrt {a c} \cos \left (f x + e\right )^{3} \log \left (-\frac {a c \cos \left (f x + e\right )^{3} - 2 \, a c \cos \left (f x + e\right ) - 2 \, \sqrt {a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{\cos \left (f x + e\right )^{3}}\right ) + 2 \, \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{4 \, a^{2} c^{2} f \cos \left (f x + e\right )^{3}}, -\frac {\sqrt {-a c} \arctan \left (\frac {\sqrt {-a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{a c \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right ) \cos \left (f x + e\right )^{3} - \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{2 \, a^{2} c^{2} f \cos \left (f x + e\right )^{3}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(a*c)*cos(f*x + e)^3*log(-(a*c*cos(f*x + e)^3 - 2*a*c*cos(f*x + e) - 2*sqrt(a*c)*sqrt(a*sin(f*x + e)
 + a)*sqrt(-c*sin(f*x + e) + c)*sin(f*x + e))/cos(f*x + e)^3) + 2*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e
) + c)*sin(f*x + e))/(a^2*c^2*f*cos(f*x + e)^3), -1/2*(sqrt(-a*c)*arctan(sqrt(-a*c)*sqrt(a*sin(f*x + e) + a)*s
qrt(-c*sin(f*x + e) + c)/(a*c*cos(f*x + e)*sin(f*x + e)))*cos(f*x + e)^3 - sqrt(a*sin(f*x + e) + a)*sqrt(-c*si
n(f*x + e) + c)*sin(f*x + e))/(a^2*c^2*f*cos(f*x + e)^3)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate(1/((a*sin(f*x + e) + a)^(3/2)*(-c*sin(f*x + e) + c)^(3/2)), x)

________________________________________________________________________________________

maple [A]  time = 0.24, size = 115, normalized size = 0.80 \[ \frac {\left (-\left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+\left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+\sin \left (f x +e \right )\right ) \cos \left (f x +e \right )}{2 f \left (a \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {3}{2}} \left (-c \left (\sin \left (f x +e \right )-1\right )\right )^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x)

[Out]

1/2/f*(-cos(f*x+e)^2*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+cos(f*x+e)^2*ln(-(-1+cos(f*x+e)-sin(f*x+e))/si
n(f*x+e))+sin(f*x+e))*cos(f*x+e)/(a*(1+sin(f*x+e)))^(3/2)/(-c*(sin(f*x+e)-1))^(3/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((a*sin(f*x + e) + a)^(3/2)*(-c*sin(f*x + e) + c)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(3/2)),x)

[Out]

int(1/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}} \left (- c \left (\sin {\left (e + f x \right )} - 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))**(3/2)/(c-c*sin(f*x+e))**(3/2),x)

[Out]

Integral(1/((a*(sin(e + f*x) + 1))**(3/2)*(-c*(sin(e + f*x) - 1))**(3/2)), x)

________________________________________________________________________________________